

Resilience in Asset Management

Perspectives on how the need for increased infrastructure resilience redefines key Asset Management strategies and practices

Dr. Ricky Swanepoel Technical Executive Program 224: Integrated Asset Management

2024-06-04

inXfwww.epri.com© 2024 Electric Power Research Institute, Inc. All rights reserved.

GENERATION

Points of conversation

Asset Lifecycle

Taking a holistic approach to asset management across the entire asset lifecycle

Discussions and a conversation around asset management resilience change impacts

N2

Global Context

The global landscape - demanding human and business resilience

A rapid progression

from "simple" to

"complex and chaotic"

Global Environmental Crises

Global Supply Chain instability and disruptions

Changing Power Utility Operating Models

Digitalisation & the IoT (Industry 4.0+)

Ageing Workforce and need for a future-proof skills profile

Non-traditional power/energy providers entering rapidly

Data overload & misinformation - making sense of the disorder

Social & Geo-political drivers, risks & derailers

Global Financial Crises and infrastructure funding

Clean Power Generation within a Just Energy Transition

Ageing and unreliable

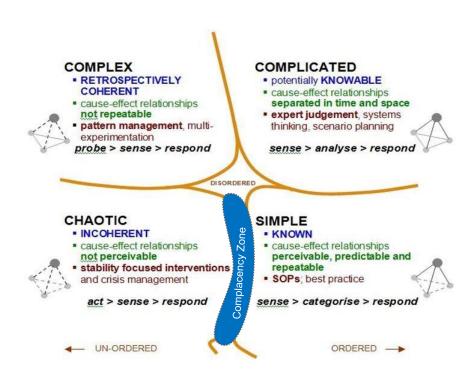
Resource scarcity & cost (oil, gas, water & skilled staff)

a low carbon energy future

Resources capable of enabling

New generation of professionals with **Unconventional Learning Preferences**

EPR

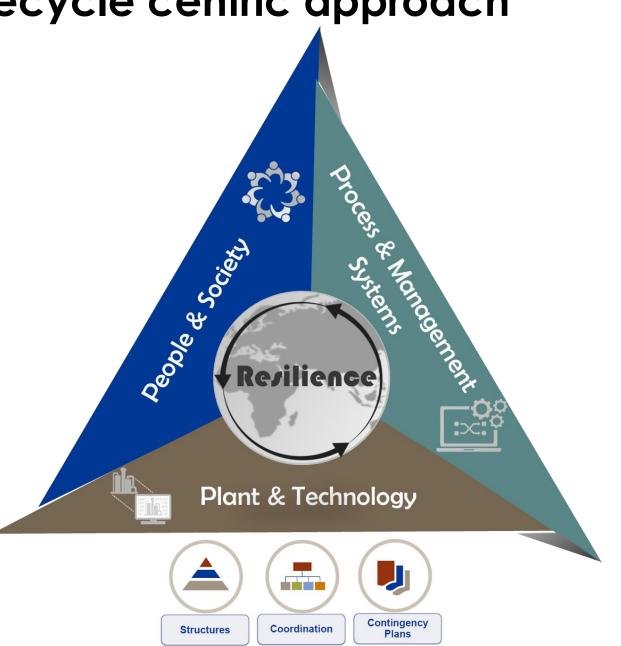

A holistic approach to Asset Resilience

Why Critical Infrastructure & Asset Resilience matters so much

Critical infrastructure inter-dependence lead to an increase in probability and severity of failures cascading across multiple different socio-economic eco-systems – this requires a whole systems and asset lifecycle centric approach to create organizational resilience in critical infrastructure such as power generation.

And resilience challenges, therefore, often fall in the categories of complicated, complex and even chaotic (how we make "sense" and perceive the world around us).

The CYNEFIN Framework© – Dave Snowden


EPRI

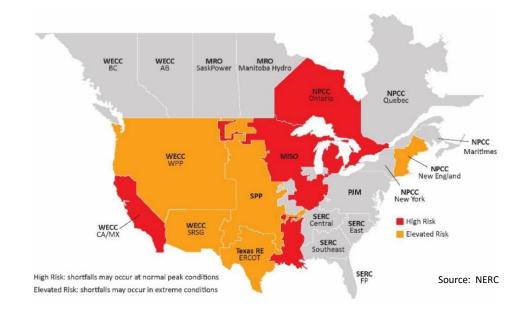
Electrical Power is a *FUNDAMENTAL SOCIO-ECONOMIC ENABLER*!

A whole systems and asset lifecycle centric approach

The expectation should be to consider critical aspects regarding power plant reliability, availability, maintainability, and resilience in context to **total asset lifecycle** in the following dimensions:

- Plant (Mechanical integrity, appropriate asset and reliability strategies, specialist knowledge of complex behaviors involved when it comes to resilience challenges, operational experience (OE) on plant behavior and physics of failure of power plant assets, etc.)
- **People & Societal Impact** (Well-defined and focused competency frameworks; clear roles and responsibilities, resilience training and development, sharing of operational experience, etc.)
- **Process and Management Systems** (All technical and related business processes to effectively manage plant geared at supporting resilience, efficiency and ability to respond effectively to resilience issues.)
- **Technology** (Appropriate use of asset design and plant health condition information to support better decision-making; use of enabling and smart technologies to improve plant data monitoring and support improved response to plant failures and resilience risks [known and developing]).

How Resilience are changing AM approaches


Design Requirements: Abnormal is the new normal

- Consider the additional Physics of Failure imposed on assets due to adverse weather conditions
- Consider reduction in useful asset life (design life) due to adverse conditions (and risk mitigation strategies for this)
- Increased introduction of smart-sensors and monitoring technology required to be more responsive in adverse conditions
- FMECA analysis must now also consider impact of external influences (beyond plant boundary)
- Defining the performance data required in SCADA/PLC systems and field instrumentation design more implicitly to enable ML (enabling increased predictive capability)
- "1 in 50, or 1 in 100 year events" are much more frequent so must be factored into design criteria and design for safety considerations: Mitigating the potential risks must consider ALARP principles from an impact perspective.
- Generation plant design can no longer be done in isolation whole power system influences must be considered.

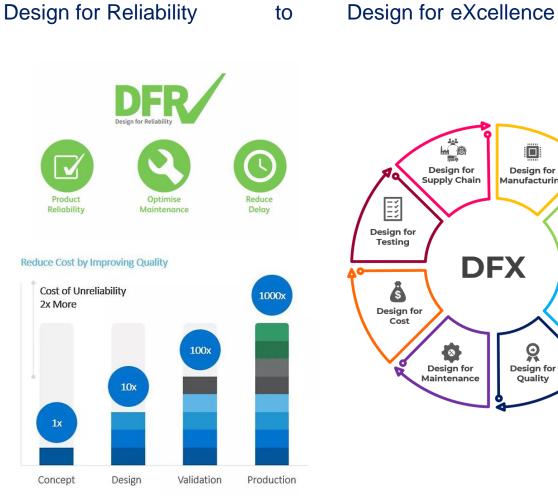
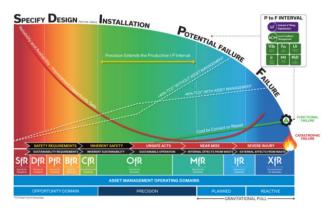
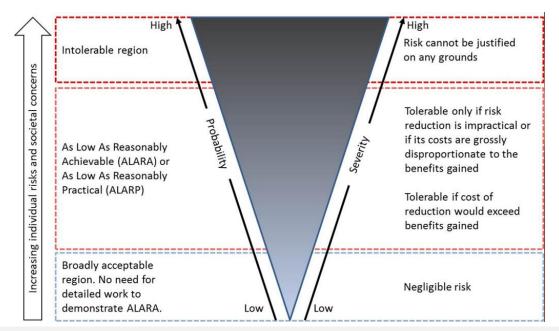

This map denotes the approximate location for each of the 18 separate billion-dollar weather and climate disasters that impacted the United States in 2022.

Figure 1.1: 2022 U.S. Billion-Dollar Weather and Climate Disasters²²


Figure 1: Risk Area Summary 2023–2027

Asset Design Processes - From DfR to DfR²



Design for Reliability AND Resilience

Source: www.reliabiltyweb.com

EMERGENCY CAPACITY

to

RESILIES

Territory

Ambient

Resilience-Based

Design

Framework

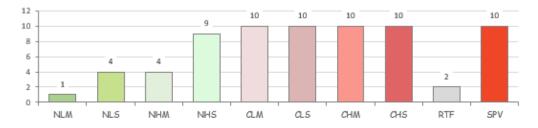
Costs

assessment

EVALUATION


Asset Criticality Ranking – More Risk-Informed

Moving from One-Directional Criticality Assessment


to

Bi-Directional Risk Assessments*

▼ Environment Average Factor Applied per Classification

▼ Environment Highest Factor Applied per Classification

Ranking Value	Environmental Impact
1	No Discernable Environmental Effect caused by System
2	System Normal operation noticeably impaired, with Environmental impact
3	Poor System RAM performance Detracts from environmental compliance Goals
4	Poor System RAM Prevents effective Environmental Management
5	Poor System RAM Loss of environmental control Function
6	Poor System RAM result in Imminent Environmental Non-Compliance (with Warning)
7	Poor System RAM result in Immediate Environmental Non-Compliance (without Warning)
8	Poor System RAM result in Penalty/Fine for Environmental Non-Compliance
9	Poor System RAM result in Immediate Environmental Violation/Shutdown (with Warning)
10	Poor System RAM result in Immediate Environmental Violation/Shutdown (without Warning)

Outward Facing Impact & Risk

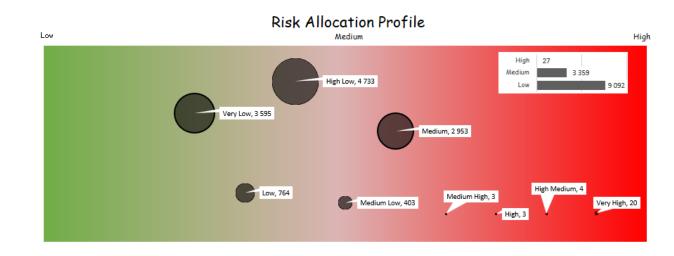
Ranking Value	Environmental Impact
1	No Discernable Environmental Effect caused by System
2	System Normal operation noticeably impaired, with Environmental impact
3	Poor System RAM performance Detracts from environmental compliance Goals
4	Poor System RAM Prevents effective Environmental Management
5	Poor System RAM Loss of environmental control Function
6	Poor System RAM result in Imminent Environmental Non-Compliance (with Warning)
7	Poor System RAM result in Immediate Environmental Non-Compliance (without Warning)
8	Poor System RAM result in Penalty/Fine for Environmental Non-Compliance
9	Poor System RAM result in Immediate Environmental Violation/Shutdown (with Warning)
10	Poor System RAM result in Immediate Environmental Violation/Shutdown (without Warning)

Inward Facing Impact & Risk

Ranking Value	Resilience Impact
1	No Discernable impact on system due to adverse Climate/External environmental impacts
2	System Normal operation slightly impaired by adverse Climate/External environmental impacts
3	System RAM performance notably impacted due to adverse Climate/External environmental impacts
4	System RAM performance significantly impacted by adverse Climate/External environmental impacts
5	System RAM 25-50% Loss of Function due to adverse Climate/External environmental impacts
6	System RAM 50-75% Loss of Function due to adverse Climate/External environmental impacts
7	System RAM > 75% Loss of Function due to adverse Climate/External environmental impacts
8	Single Unit Loss of Function due to adverse Climate/External environmental impacts
9	Multi-Unit Loss of Function due to adverse Climate/External environmental impacts
10	Entire Power Plant Loss of Function due to adverse Climate/External environmental impacts

* 2025 ACR Toolkit Enhancement

Asset - Risk Matrix


Fixed Weighted Risk Assessment

System Criticality Ranking (SCR)	Volue	System Dropdown Selection
Safety	1	No Safety Concern
Environment	10	Immediate Violation (without Warning)
Plant Availability	10	Plant Shut Down (all Units)
Heat Rate Efficiency	2	20 > Reduction ≥ 0
Cost Factor	10	System Cost 10
System Criticality Ranking (SCR)	17,46	Min = 2.24, Max = 22.36
Component Criticality Ranking (CCR)	Value	Component Dropdown Selection

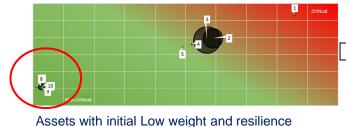
, , ,	_	
Safety	10	Redundant Safety System 2.1
Environment	7	Immediate Non-Compliance (without Warning)
System Availability	2	Component Availability 2
Heat Rate Efficiency	5	60 > Reduction ≥ 50
Cost Factor	3	Component Cost 3
Operational Criticality Ranking (OCR)	13,67	Min = 2.24, Max = 22.36
Component Criticality Ranking (CCR)	238,82	Min = 5, Max =500
Asset Failure Probability Factor (AFPF)	2	Min = 1, Max = 10
Maintenance Priority Index (MPI)	477,64	Min = 5, Max = 5,000

to

Variable Criteria Weighting and Risk Assessment*

Calculations

System Criticality Ranking (SCR)	17.46	System: SQROOT(Safety^2 + Environment^2 + Availability^2 + Efficiency^2 + Cost^2)
Operational Criticality Ranking (OCR)	13.67	Component: SQROOT(Safety^2 + Environment^2 + Availability^2 + Efficiency^2 + Cost^2)
Component Criticality Ranking (CCR)	238.82	Calculated: System Criticality Ranking (SCR) * Operating Criticality Ranking (OCR)
Maintenance Priority Index (MPI)	477.64	Calculated: Component Criticality Ranking (CCR) * Asset Failure Probability Factor (AFPF)


SCR) * Operating Criticality Ranking (OCR) ng (CCR) * Asset Failure Probability Factor (AFPF)

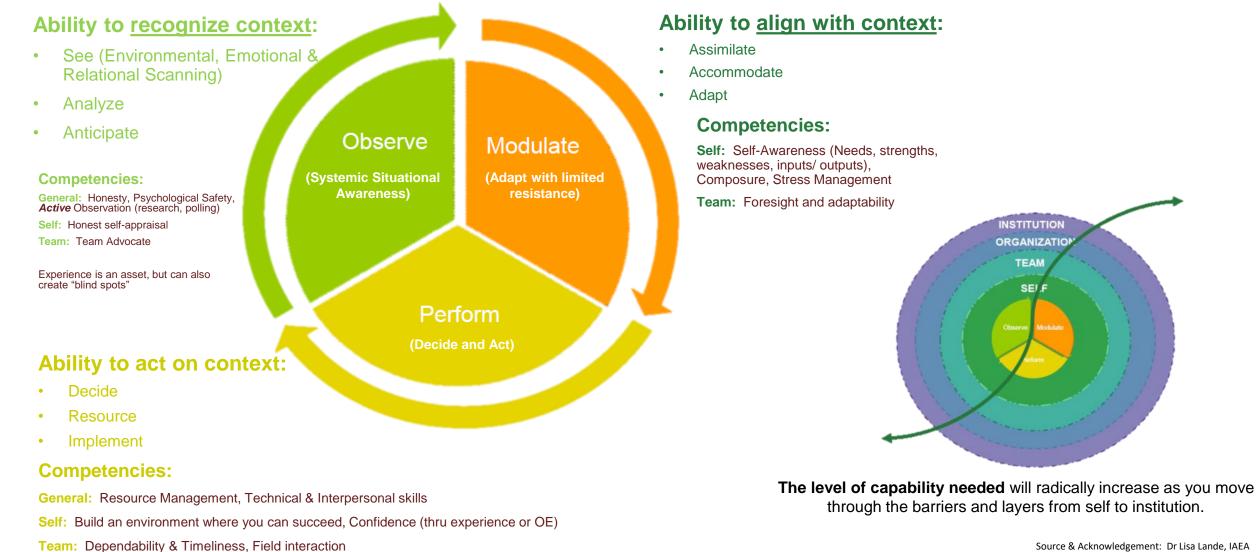
Maintenance Priority for 12 480 Components

RTF NLM NLS NHM NHS CLM CLS CHM CHS SP	RTF	NLM	NLS	NHM	NHS	CLM	CLS	CHM	CHS	SPV
--	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

10	1			1		2	3			20
9					1			1		
8		1	1			1	1			
7	2		2	2 253	1					
6					60	12				
5			1		1	1				
4		1	3	2 319	237	72	137	1		
3	19		9	31	2	4	22	318	11	
2			127	547	609	1646	47	17	155	1
1	2	10	3 566	36	44	118	2			1

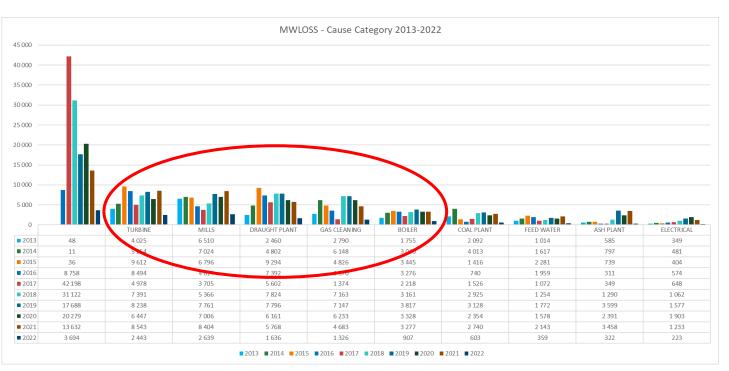
Number of Compor	Selection Criteria Data					
Very Low	3 595	Medium Low	403	High	3	Unit (s) 🔻 All
Low	764	Medium	2 953	High Medium	4	Classification 🔻 CLM
High Low	4 733	Medium High	3	Very High	20	Risk Level 🔻 2

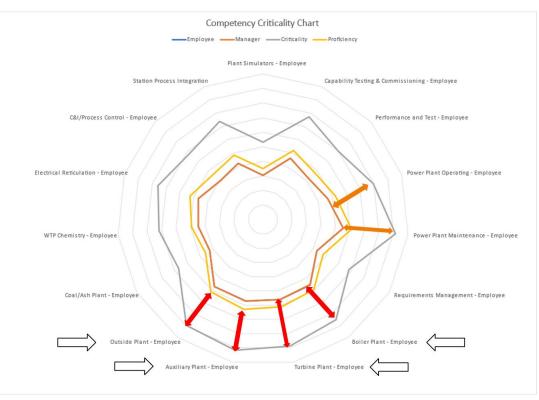
Criticality Criteria Weight and resilience changes result in notable changes to the risk profile


* 2025 ACR Toolkit Enhancement

impact

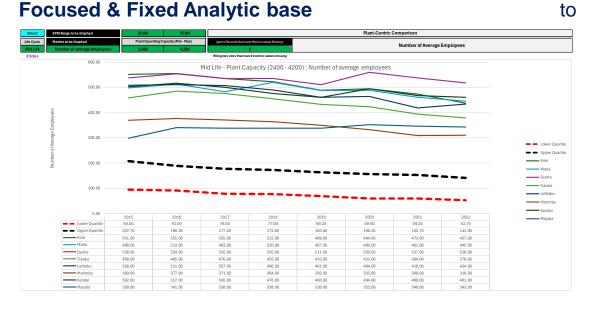
Human Resilience impacts


The ability to MANAGE and LEAD through Resilience Impacts and be adaptable to continuous CHANGE



Human Resilience & Capability Matters

Skill & Capability does have correlation with plant performance!

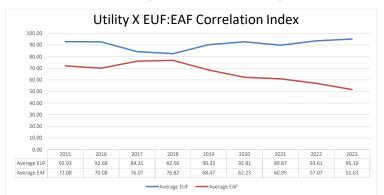


- S&C Proficiency Gaps most notable in the plant areas contributing to the most pant load losses (Boiler & Auxiliaries, Turbine and Auxiliaries and Emission Management Technologies)
- Extends to Operator and Maintenance S&C's vital to maintain asset health with complex equipment arrangements

Radar Graphs: Map employee/manager skill & competency (S&C) rating against criticality of the dimension for the job role and the required level of proficiency.

Asset Performance Analytics

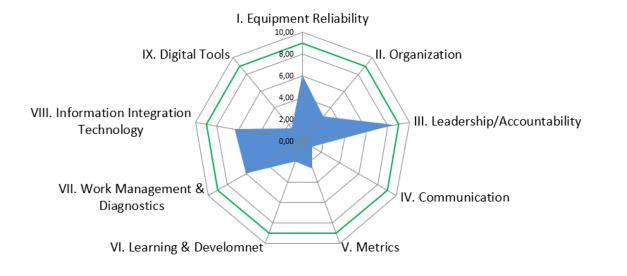
Evaluation of metrics on a more individualized basis to draw business insights


In this example, considering employee numbers (FTE) in isolation may indicate above average staff numbers.

But evaluated against FTE/MW, the Utility's performance generally outperform those of comparative peers of same age plant and technology – showing a better RoI on staff utilization

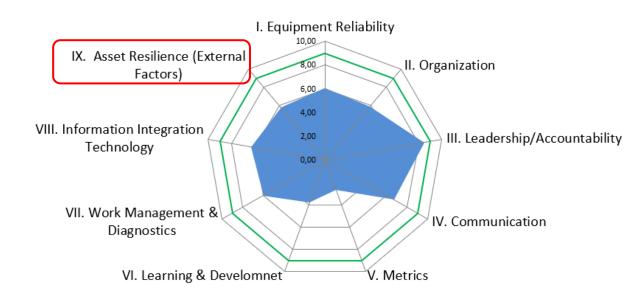
Adaptive, Flexible and Multi-dimensional Analytics

Enabling resilience analytics by allowing analytics across asset performance metrics to be interrogated in an adaptive manner, to bring new business insights by exposing statistically significant relationships.



The statistical relevance correlation index between asset management performance metrics for Utility X Plants can be interrogated – in the example it is significantly strong and inversely related at -0,75.

Asset Benchmarking


Measuring Internal AM Processes and Efficiencies

AM/ER Assessment Key Elements Utility Plant XXX Results

<u>Resilience Aware</u> Holistic Asset Management

Asset Reliability & Resilience Assessment Utility Plant XXX Results

2 Key External Factors impacting Asset Management:

- Climate Impact & Disaster Resilience
- Cyber Threats (Cyber Security)

Collaboration initiative with EPRI Cyber Security Program in progress

to

In Closing... Some of the Opportunities

Improving understanding of asset behaviour and impacts of climate resilience on RUL – collaboration vehicles like ClimateREADi

Leveraging AI and Machine learning to be more predictive in understanding asset behaviour and making informed decisions about them

Industry & Country/Regional Collaboration on Disaster Resilient Infrastructure – Asset Owners, Designers, Constructors / Manufacturers & Society

Real-time asset tracking & Smart-Sensors (having near-real-time data available)

Advanced Analytics – Improving Adaptive & Predictive Capability of assets

Contextual climate and asset condition data sharing to improve knowledge and staff resilience/decision-making

Robotics and technology to remove / reduce human risk in adverse climate & weather conditions

Discussion - Q&A

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved

28

© 2024 Electric Power Research Institute, Inc. All rights reserved.

EPRI